

# **MASSIVE TRANSFUSION**

## BY: DR. S.VENKAT ASSOCIATE PROFESSOR DEPT. OF TRANSFUSION MEDICINE

# DEFINITION



## Massive transfusion:

- Is defined as replacement of the patients total blood volume by stored blood in less than 24 hrs.
- Replacement of more than 50% of the patients blood volume in 3hrs.
- Replacement of blood loss more than 150 ml/min in an adult.
- > In children it is defined as transfusion of more than 40 ml/kg.
- Massive transfusion implies a single transfusion greater than 2500ml/ 5000ml transfused over a period of 24hrs.
- Involves selection of appropriate amounts & types of blood components to be administered.

# INDICATIONS OF MASSIVE TRANSFUSION



### 1.Traumatic

- Haemorrhagic shock: acute blood loss of more than 20% blood volume in adults or 10-15% in children & pregnancy.
- Severe Trauma.
- 2. Non traumatic
- Exchange transfusion
- Cardiopulmonary bypass
- GIT bleeding
- APH Abruptio placenta, Placenta previa
- PPH Atonic uterus, Inversion of uterus.
- Anemia

# MASSIVE TRANSFUSION PROTOCOL



- It is the responsibility of all members of resuscitation team.
- Standardized lab monitoring for clinical crisis management.
- To provide optimal blood component therapy.
- Maintain intravascular volume.
- Infusion of RBC, Plasma & Platelets in ratio without waiting for lab results.

# MASSIVE TRANSFUSION PROTOCOL



- Avoidance of hypothermia
- Normalization of acid base balance.
- Management of preexisting haematological or coagulative disorders.
- Maintain normal ionized Ca level.
- Assessment of ongoing blood loss.

## **TRANSFUSION TRIGGER**



- When HB level is < 7g/l, HCT 21% with acute blood loss, transfusion is indicated
- > In > 80 yrs old PCV of 30-33% is the trigger.
- The use of only Hb as a trigger for transfusion should be avoided.
- Decision for RBC transfusion should be based on individual volume status, evidence of shock, duration & extent of anemia & cardiopulmonary physiologic parameters.

## LOSS OF 1<sup>st</sup> HALF OF CBV



Circulating volume maintained by:

- Crystalloids, colloids, plasma proteins, Hydroxyethyl starch, Dextran
- Packed RBC
- Maintain CVP 5-10cm of H<sub>2</sub>0

# LOSS OF SECOND HALF OF CBV



Dilutional coagulopathy sets in:

- Treatment with FFP
- Follow up PT, APPT
- Packed RBC
- Maintain P C V at 30%

# LOSS OF COMPLETE CBV



- Treatment with FFP & PACKED RBC
- Maintain P C V at 30%
- Dilutional thrombocytopenia sets in.
   Treatment with Platelets.

## EMERGENCY RELEASE POLICY



- The blood bank should be informed of the need for massive transfusion in a patient & the urgency of transfusion.
- Within 5 mins of receipt of sample( extreme emergency) O Rh (D) negative blood.
- Rh (D) negative women of child bearing age, Rh(D) negative blood supplied.
- Within 15 mins of receipt of sample( urgent cases) ABO & Rh(D) Type specific cross matched blood.
- Within 45 mins of receipt of sample Type specific cross matched blood.

# Suggested ABO Group selection order for Transfusion of RBC'S



| Recipient        | <u>1<sup>st</sup> choice</u> | 2 <sup>nd</sup> choice | 3rd choice | 4 <sup>th</sup> choice |
|------------------|------------------------------|------------------------|------------|------------------------|
| <u>ADO GIOUP</u> |                              |                        |            |                        |
| AB               | AB                           | А                      | В          | 0                      |
| А                | А                            | 0                      |            |                        |
| В                | В                            | 0                      |            |                        |
| 0                | Ο                            |                        |            |                        |

# STRATEGY FOR MASSIVE TRANSFUSION



### **Condition**

Low blood vol. \* Low O2-Carring capacity \*

Hemorrhage owing to:

Thrombocytopenia Coagulopathy <u>Treatment</u> Crystallods or colloids RBCs

Plat. Concentrates FFP, cryoprecipitate. (if Fib. Is low)

\*If these occur simultaneously, whole blood may be indicated.

## LABORATORY INVESTIGATIONS



**Investigations** Hb/ HCT Platelet count **Prothrombin time** PTT Fibrinogen **Blood** gases Thromboelastography 

 Target value

 10g/dl,32%

 >50 x 10<sup>9</sup>/l

 < 15 secs</td>

 < 1.5 sec</td>

 > 0.8g/l

## COMPLICATIONS OF MASSIVE TRANSFUSION



 "IT IS OFTEN THE UNDERLYING CAUSE AND CONSEQUENCES OF MAJOR HAEMORRHAGE, THAT RESULT IN COMPLICATIONS, RATHER THAN THE TRANSFUSION ITSELF"

## COMPLICATIONS OF MASSIVE TRANSFUSION



- 1. <u>Acidosis</u>: result of inadequate treatment of hypovolemia than due to transfusion.
- Hyperkalemia: stored blood results in a small increase in extracellular K+ concentration which will increase the longer it is stored.
- 3. <u>Citrate toxicity & hypocalcemia</u>: are rare, due to large volume transfusion of whole blood.
- Iv 10% calcium gluconate 10ml with every litre of transfused blood.



- 4 . <u>Depletion of fibrinogen & coagulation factors</u>: plasma undergoes loss of coagulation factors during storage particularly factor v & viii unless stored at -25 deg C or colder. Red cell concentrate lacks coagulation factors.
- Dilution of coagulation factors & platelets will occur following administration of large volume of replacement fluids



### Management:

if PT is prolonged - ABO compatible FFP If APTT prolonged, factor viii/ fibrinogen concentrate is recommended.

### 5. Depletion of platelets:

Platelet function is lost during storage of whole blood. *Management:* 

Give PC only when patient shows clinical signs of micro vascular bleeding or platelet count falls below 50x10<sup>9</sup>/l



#### 6. <u>Hypothermia</u>:

Rapid administration of large volumes of blood or replacement fluids directly from refrigerator can cause reduction in body temperature.

7. <u>DIC</u>: May develop during the course of massive blood transfusion. It can also be due to the underlying reason for transfusion such as:

- a. Hypovolemic shock
- b. Trauma
- c. Obstetric complications

Management- treatment of underlying cause.



## 8. Air embolism

### 9.TRALI (Transfusion induced lung injury)

10. GVHD (Graft versus host disease)

## **11.MICRO AGGREGATES**



